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Abstract.  Common system engineering methodologies and practices do not mitigate the 

risks of unexpected events, such as user errors or mode errors, typically attributed to ‘force 

majeure’. The underlying premise is that systems engineers can mitigate such operational 

risks by considering the human limitations in assuring that the system and its operators are 

coordinated. The study addressed unexpected events that exist in various kinds of human-

operated systems. Because mishaps are typically considered as force majeure, attributed to 

user errors, the study considered the human limitations in coordinating with the system 

during the interaction. Prior art demonstrates that usability engineering methods may solve 

part of the problem. However, in-depth knowledge of the system behavior is required to 

enable integration of such methods. This implies that the methods for mitigating human risks 

should be integrated in the system engineering practices. The study extended the scope of 

system engineering, adding methods and guidelines to help protect from unexpected events. 

The effectiveness of the methodology was evaluated by case studies, including well-recorded 

accidents. 

INTRODUCTION  

Unexpected events are instances of abnormal system behavior, which might be unfortunate. This term complies 

with the “bad apple” approach (Decker, 2006), by which the mishap is due to the trigger (the “old view”), 

instead of the situation (the “new view”). Unexpected events are typically attributed to human errors, resulting 

in productivity loss (Landauer, 1996) and accidents (Sheridan & Nadler, 2006).  

This article presents a study about methods for protecting from unexpected events. The study presents a Human 

Accountability Scale (HAS), enabling to evaluate the accountability-safety tradeoff (Dekker, 2007). The study is 

motivated by the premise that the system should not enable unexpected events (proactive approach to safety: 

Peterson, 2001), and if it does, mishaps are inevitable. The study is based on applying the methods on well-

known accidents, and examination of the effectiveness of such application. 

The framework for protecting from unexpected events is the Systems-Theoretic Accident Model and Processes 

(STAMP) introduced by Leveson (2004). A key feature of this framework is the association of constrain with 

normal system behavior. According to this model, accidents are due to the improper setting of constrain, or to 

insufficient means to enforce them on the system. The methods presented in this study are about setting and 

enforcing such constrains.   

STUDY OVERVIEW 

The problem that the study addressed.  Common system engineering methodologies and practices do not 

mitigate the risks of unexpected events, such as user errors or mode errors, typically attributed to „force 

majeure‟. The underlying premise is that system engineers can mitigate such operational risks by considering 

the human limitations in assuring that the system and its operators are coordinated. 

The industry view of the problem.  The study addressed unexpected events that exist in various kinds of 

human-operated systems, such as: 
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 Home and personal systems: for example, the ungraceful system response to unintentional changing of the 

TV channel instead of that of the digital converter 

 Safety-critical systems: for example, the crash of transportation systems due to navigating in the wrong 

mode 

 Information systems: for example, unintentional erasing data following the user confirmation of a risky 

action, which was not accompanied by adequate warning 

 Mission-critical control systems: for example, damage due to starting an engine when in the wrong state. 

Fulfilling the industry need.  Because mishaps are typically considered as force majeure, attributed to user 

errors, the study focused on human limitations in coordinating with the system during the interaction. Prior art 

demonstrates that usability engineering methods may solve part of the problem. However, in-depth knowledge 

of the system behavior is required to enable integration of such methods. This implies that the methods for 

mitigating human risks should be integrated in the system engineering practices. The chosen direction was by 

extending the scope of system engineering, adding methods and guidelines to help protect from unexpected 

events. The methods and guidelines are be based on study of known failures, literature research and 

interviewing system engineers. 

THE EVALUATION FRAMEWORK 

The framework for evaluating the risks of unexpected events consists of a classification of unexpected events, 

and examples of unexpected events that resulted in mishaps. The examples were classified according to the 

consequences of the unexpected events, in three categories as follows: 

 Inter-system mismatch 

 Intra-system inconsistency 

 Operator‟s confusion. 

Inter-system mismatch.  This mishap class is about Systems of Systems (SoS). The examples in this category 

are of inappropriate communication between systems. Examples: 

Friendly fire 

 Friendly fire, Afghanistan 2001 (Casey, 2006) 

 Friendly fire, Zeelim 1990 (http://www.ynet.co.il/yaan/0,7340,L-1120082-PreYaan,00.html)  

 Friendly fire, Zeelim 1992 (http://he.wikipedia.org/wiki/אסון_צאלים_ב ). 

Unintentional missile launch   

The example is of a potential failure due to disregarding the operating scenario in automatic recovery from an 

intermittent power failure. 

Intra-system inconsistency.  This mishap class is about state inconsistency between system units. Example: 

 Therac 25 (Casey, 1996a) 

Operator’s confusion.  This mishap class is about the mismatch between the system state and the operator‟s 

perception of the system state. 

 Torrey Canyon, 1967 (Casey, 1996b). 

 Flight AF 296 at the 1988 air show (Casey, 1996c) 

 Flight IC 605, 1990 (Casey, comments on 1996c). 

ANALYSIS OF UNEXPECTED EVENTS 

The following model was used to analyze the sources for mishaps such as those in the examples: 

Slip management.  This document presents a specific pattern of the system behavior, which is typical of 

mishaps.  

In normal operation, all the system units comply with a common scenario. This is the Normal system state. In 

normal operation, any of the system units can receive various events. The event is considered normal, or 

expected, if the unit was designed to respond properly to the event. Else, the event is called a slip. Typical slips 

are due to a hardware faults or to a user‟s unexpected action.  

As a result of the slip, the system state changes to Exceptional. Then, if the system is resilient to the exceptional 
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event, the system may resume its normal state. Otherwise, a subsequent event may result in a mishap. When this 

happens, we refer to it as Unexpected. 

Exceptional states.  Systems are designed to operate according to scenarios. This means that the response of 

any unit to any event is designed based on an assumption about the operating scenario. In normal operation, all 

system states assume the same scenario. This scenario is called the system context.  

Context compliance.  Occasionally, one of the system units may receive an exceptional event (a slip). In 

response, the operating scenario may change. For example, in case of a unit failure, the operating scenario may 

change to Unit Replacement. If all the system units operate now according to the new scenario, then the system 

is context compliant. Otherwise, if not all the system units comply with same context, then the system reaches a 

state of context inconsistency.  

This pattern was applied on the examples, as follows: 

Friendly fire in Afghanistan, 2001.  The reason for the accident was that the operating state of the GPS slipped 

out of context: the operating scenario was of Target Acquisition, but the GPS reset following the battery 

replacement resulted in changing GPS mode to the default Navigation mode. Consequently, the GPS 

coordinates were set automatically to those of the unit location, which did not comply with the operating 

scenario. 

Friendly fire in Zeelim 1990.  The command by the artillery coordinator was a slip, out of the context. The 

operating scenario was related to the next target, but due to the slip, the command did not comply with the 

operating scenario. 

Friendly fire in Zeelim 1992.  While still in the „no fire‟ mode, the soldier who launched the missile received a 

fire command. Based on wrong perception of the exercise stage, he assumed that the operating mode had 

changed to „real fire‟ mode, which was out of context: the operating scenario was still the previous „no fire‟ 

mode. 

Unintentional missile launch.  The missile reset resulted in the automatic setting to the default Operating 

mode, which did not comply with the context. 

Therac 25.  The operator recovered from an inadvertent erroneous setting, but when issuing the command, the 

system still did not reach the appropriate state. Instead, it was activated when in an unsupported state, which did 

not comply with the operating scenario. 

Torrey Canyon.  The operating state of the steering control unintentionally changed to „Control‟, which was 

appropriate for maintenance, but not for navigation. Consequently, the steering control was out of context. 

Airbus A320 accidents.  Unknown to the pilot, the operating state of the airplane was of “idle/open descent 

mode”, which did not comply with the operating scenario. This mode inconsistency applied to both the AF296 

and the IC605 accidents. 

Context compatibility.  Events are perceived as expected if they comply with the operating scenario, which 

defines the context of operation. To work properly, all system units, comprising the human operator, should 

behave according to the procedures defined for this context. 

Unexpected events should be expected.  Unexpected events are the result of the need to enable the human 

control over exceptional situations, such as in emergency. At design time, we anticipate main scenarios, but not 

all possible scenarios. To handle exceptional situations, we need to rely on the human operator. We provide the 

operator with exceptional control, and we expect the operator to judge when and how to use this exceptional 

control.  

Another main source for unexpected events is design mistakes. It is impractical at design time to consider all 

possible situations, and to find proper solutions for all circumstances. 

This conclusion has also been indicated recently by the need to “prepare for the unprepared” (Paries, 2010). 

Reasons for compliance failure.  Possible sources of exceptional events include: 

 Design that does not fit the operational needs (Airbus 320) 

 Interruption of the operational procedure (Afghanistan 2001, Unintentional missile launch) 

 Unintentional action that does not comply with the context  (Torrey Canyon, Zeelim 1990) 

 Failure to comply with a change in the context (Therac 25) 



 

  

 False perception of the context change (Zeelim 1992) 

Enforcing compliance verification.  Traditional system design is based on requirement specifications, which 

are based on requirement analysis, which, in turn, is based on scenario specification. Practically, however, in the 

specification documents, the requirements are dissociated from the scenarios. The specifications describe 

features and operational procedures. The problem is that in the documents, the features are not related to the 

operational scenarios with which they should comply. Also, typical procedure specification documents do not 

describe the relationships with the system states, and do not describe the desired response to all possible events. 

Consequently, the derived system design does not incorporate means to match the system activity with the 

operating scenario.  

Common practices of requirement specification do not enforce compliant verification 

Extending the specification completeness problem.  Typically, the system behavior during the accident 

development is well understood ad hoc, after the investigation had been completed. However, at design time, the 

event resulting in the mishap was not expected. A main reason for this may be that it is impractical to consider 

the enormous number of all possible system states. The ability to solve this problem is critical for ensuring safe 

operation of complex systems. This problem is an extension of the classical specification completeness problem.  

To enable prediction of unexpected events, we need to formalize the operational scenarios, and 

the relationships between the system state and the operational scenarios. 

The validity of specification completeness.  Traditional specification completeness is about assuring that the 

system response to all possible events is well defined, for all possible system states. The completeness problem 

is about ways to ensure that these events are indeed well defined.  

A primary challenge in defining what we mean by „specification completeness‟ is to define what we mean by 

„well defined‟.  When applying common practices, this term commonly denotes system resilience. The primary 

concern then is to make sure that the system might not crash. This definition is insufficient for safety assurance, 

because it does not consider the human operator needs: to know that the system has received an unexpected 

event, and that it might be in an exceptional state. 

To enable protection from unexpected events, the requirement specification should define the 

means for ensuring that the human operators can handle the unexpected events.  

DEFINITION OF UNEXPECTED EVENTS 

Unexpected events may be defined by extending the definition of user errors. This definition is operative, 

namely, it enables automatic validation that the system state complies with the operating context. 

Motivation for formal definition.   

Scenario compatibility:  To enable automatic validation that the system behavior complies with the context, we 

need to formalize the rules for state-scenario and for event-scenario compliance. These rules should be 

presented in the system requirement specifications, and should be considered in the system design.  

Context-based specification:  The scenario, which formalizes the operational context, should have the following 

properties: 

 It should express the intentions of the stakeholders, and  

 It should be relate to the operator‟s view of the operational stage. 

Therefore, scenarios may be described as rules associated with operational procedures. 

Assuring specification completeness:  To ensure context based specification completeness, for each event, in 

each system state, for each operational scenario, the specification document should include requirements about: 

 Means to notify the human operators about exceptional states 

 Means to ensure that the human operators are aware of risky situations 

 Means to guide the human operators about the ways to resume normal operation. 

An ad-hoc definition of user error:  The ad-hoc definition of user errors complies with the observation that a 

user activity is typically classified as an error if the results are not convenient to the stakeholders (Dekker, 2002; 

Reason, 1997; also http://www.bmj.com/cgi/content/extract/320/7237/768). This observation means that a user 

error is not the cause for the misfortune; rather, it is the result of the user activity (Hollnagel, 1993).  
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Use errors vs. user errors.  „Use error‟ is a recently introduced term, replacing the popular term „user error‟. 

The need for changing the term was because of common mal-practice of the stakeholders (the responsible 

organizations, the authorities, journalists) in cases of accidents (Dekker, 2002): instead of investing in fixing the 

error-prone design, the management attributed the error to the users. 

An operative definition of use error.  The ad-hoc definition implies that the use error is the consequence of a 

user command. This observation might lead to a fatalistic attitude, implying that we cannot avoid use errors. To 

enable mitigation of the risks of use errors, we need to consider the circumstances of the mishap, regardless of 

the results. The definition here is intended to enable prevention of such mishaps: 

A user command is a use error if the results do not comply with the designer’s intention. 

This definition may seem fuzzy, as intentions are not in the scope of common engineering practices. To enable 

detection of unexpected events, we need to rephrase the definition, using engineering terms, such as design 

requirements and guidelines. An operative definition of a use error is:  

A user command is a use error if it is not in the scope of predefined user commands appropriate 

to the operating scenario. 

This definition is operative, because: 

 we know what are the predefined commands,  

 we can formalize the operational scenarios, and, 

 we can assign the user commands to operational procedures or constrains, associated with the operating 

scenario. 

For example, the use error in the Torrey Canyon accident may be described by: 

 The predefined commands, including setting the steering control to either of the Manual, Automatic or 

Control position 

 Formalizing the Navigation and the Maintenance operational scenarios 

 Assigning the Control position to the Maintenance scenario, but not to the Navigation scenario. 

Context-based design.  In order to avoid unexpected events, we need to consider the operational context in the 

design, to apply constrains such that: 

 Operational scope: the system is allowed to operate only in predefined scenarios 

 Design for consistency: at any time during the operation, the system should operate according to one of the 

predefined scenarios 

 Consistency validation: the system should be provided with means to make sure that all units operate 

according to the context 

 Rule-based consistency assurance: the means may include rules for preventing uncontrolled context change, 

and for synchronizing the system according to context changes under control. 

Formalizing the Unexpected Events.  An unexpected event is an exception from the rules, which are typically 

expressed by operational procedures and constrains. The system design may include: 

 An interaction protocol, defining the rules to control the event processing and the state changes, according 

to the operating scenario 

 A scenario tracker, which may hold and update a record of the operating scenario 

 An event interpreter, which may verify that the events received comply with the operating scenario 

The protocol.  In order to enable automatic detection of unexpected events, the system design should include a 

protocol, which is a model of the normal system behavior, consisting of these rules. The protocol should provide 

the information about how to respond to each event, in any of the operational scenarios. Based on this protocol, 

at run time the system should trace the events and update the operating scenario. If in any stage the event does 

not comply with the protocol, the system may notify about an unexpected event.  

A definition of unexpected events.  The system engineering extension to the definition of use errors is based on 

the SoS paradigm, in which the human operator is an intelligent sub system. To extend the definition, we need 

to extend the scope of the events of user commands. 

SoS events.  SoS events may be classified as either normal or abnormal. Normal SoS events are those described 

in the requirement specification, and abnormal events are those that are missing from the specification 



 

  

documents. By its nature, an abnormal event is unexpected, and the system design should include protection 

from undesired consequences of such events. However, this work focuses on normal SoS events which might be 

unexpected. 

The designer’s view of unexpected events.  The designers‟ view of unexpected events follows: 

An event is unexpected in an operational scenario if the system was not designed to accept it in 

the particular scenario.  

An operative definition of unexpected events.  The operative definition is: 

A normal SOS event is unexpected if it is not in the scope of predefined events appropriate to the 

operating scenario. 

Normal events may be classified as routine or exceptional. Routine events are typically defined in the 

requirement specifications, and their effect and response are well documented. Exceptional events are 

sometimes missing, their effect description is often partial, and their response may be missing at all. Both 

routine and exceptional events are typically expected, but they might also be unexpected, triggering a mishap. 

Faults vs. Triggers.  Exceptional events are due to faults, and they result in triggers for the mishap.  

Faults may be attributed to the hardware, including running out of battery or intermittent power failure. Faults 

may also be attributed to the user. For example, unintentional key press, mouse click, slip, missing key, double 

click etc. These are all expected faults. Examples of faults include:  

 A system unit is out of service, such as due to corrosion or running out of battery (as in the GPS example) 

 Misunderstanding, such as due to communication problems (as in the Zeelim 1992 example) 

 Abnormal behavior, such as due to intermittent power failure (as in the unintentional missile launch 

example) 

 User error, such as inadvertent commands (as in the Zeelim 1990 example). 

A fault may trigger a mishap.  For example, in the GPS accident, the fault was the „Battery Low‟ indication. 

However, this event did not trigger the accident. It was the „Reset‟ event, following the battery replacement, 

which triggered the accident. 

Examples.  The following table presents the attributes of the definition above to the reference examples: 

 
Mishap Fault Trigger Procedure 

/constrain 
Appropriate for 
scenarios 

Wrong 
operating 
scenario 

Afghanistan, 

GPS, 2001 

Low battery Reset Set default 

position 

Local position 

setting 

Target position 

setting 

Zeelim, 1990 Inadvertent 

command 

Fire 

command 

Exercise plan Prior position Current 

position 

Zeelim, 1992 Wrong 

perception of the 

exercise stage 

Fire 

command 

Launch a 

missile 

Phase II – with 

live ammunition 

Phase I – with 

no ammunition 

Unintentional 

missile launch 

Intermittent 

power failure 

Reset  Set to 

Operational 

mode 

Operational 

mission 

Exercise 

Therac 25 Inadvertent user 

action 

Trigger the 

beam 

Beam spreader 

plate in place 

X ray therapy Internally 

inconsistent 

Torrey Canyon Unintentional 

change of the 

steering control 

Ship heading 

to the rocks 

Steering control 

in Control 

position 

Maintenance 

mode 

Navigation 

mode 

Airbus A320 Throttle disabled 

due to a design 

change 

Pilot intends 

to engage the 

throttle 

Protection 

envelop 

High altitude  Approach 

airport 

DETECTING UNEXPECTED EVENTS 

In order to mitigate the risks of unexpected events, we need to detect them. The formal definition of unexpected 

events presented above is operative, namely, it may be used for automatic classification of events as expected or 



 

  

unexpected. 

Architectures.  Three architectures are considered here: 

 A single system 

 A centralized SoS 

 A distributed SoS. 

A single system.  The Torrey Canyon supertanker is an example of a single system. In the simple form, 

demonstrating the detection of unexpected events, there are only two operational scenarios: Maintenance and 

Navigation. The following table presents the protocol: 

 
Event Condition System response 

Steering control set to Manual - Rudder connected to steering wheel 

Steering control set to 

Automatic 

- Rudder disconnected from steering wheel, obeys a 

predefined procedure 

Steering control set to Control Maintenance mode Rudder disconnected from steering wheel, 

Navigation mode Unexpected !!! 

Change in steering wheel 

position  

Steering control in 

Manual position 

Rudder follows steering wheel 

else No effect on rudder 

A centralized SoS.  There is only one system that traces the scenarios and verifies that the events follow the 

rules.  

Example: Zeelim 1990. The protocol is the plan table describing how many shells should be fired on each stage, 

in response to which command. The artillery battery is in charge of tracing the scenarios and verifying that they 

comply with the plan. If an event does not comply with the plan, as was the case in the Zeelim accident, then the 

artillery unit may hold the fire and notify the forward officer about the deviation from the plan. 

A distributed SoS.  The system may consist of several systems. The system owns a set of protocols defining the 

rules for communicating with the other systems. Each system traces the operating scenario, and verifies 

compliance with that scenario. This configuration may be adequate for multi-control systems, such as in nuclear 

power station, military support systems, and more. 

Example: The GPS in Afghanistan. The system consisted of two sub systems: a GPS used for target acquisition, 

and an airplane which should launch the ammunition towards the target. 

To enable detection of unexpected events, each of the two systems could trace the operating scenario. While 

communicating, the two systems could notify each other about the operating scenario. Both systems could check 

that the events comply with the protocol. In case of mismatch between the scenarios, each of them could notify 

the other. 

Design for risk detection.  In the Torrey Canyon example, consider the event of “Steering control set to 

Control” when the supertanker is in Navigation mode. The required system response, according to the response 

table above, is „Unexpected‟. When designing for risk detection, the designers need to specify how the system 

should behave when the system response is unexpected. The specification should include the following details: 

 Means to avoid escalation 

 Method for notifying the operators about risky situation  

 Procedure for recovering from the undesired state 

 Means to report about this event to the stakeholders. 

The stakeholders should be aware that the unexpected occurred, so that in an upgraded version, this event is 

expected. The system design should include means to record unexpected events, together with the history of 

events and state changes that ended up with the unexpected event. The system design should also include a 

default behavior, such as automatic shutdown. And the system design should include means to notify the 

operators about the unexpected event.    

Incremental protection development.  The response table for the Torrey Canyon above is limited to the states 

and events that were involved in the interaction just preceding the accident. In practice, the number of states and 

events that should be considered is enormous, and it is inconceivable that they all of them may be considered in 

depth at design time. This means that even when we try hard to list and provide defense against all unexpected 



 

  

event, we should still assume that some of them might sneak in at run time. 

In most cases, the rate of incidents (unexpected events) is much higher than that of actual accidents. In such 

cases, we can apply the strategy of incremental protection development. To defend against the events not 

included in the table, we need to provide a default protection, and we need to design for unexpected events as 

described above. The protection may be added incrementally: we run the system until we encounter an 

unexpected event (which, hopefully, does not result in an accident). Then we design a change for the particular 

event, and finally we upgrade the system and reiterate the procedure. 

AVOIDING UNEXPECTED EVENTS 

The best strategy for mitigating the risks of unexpected events is by avoiding them.  

The risk: unintentional control activation.  If the system design does not protect from careless control 

activation, then we should assume that eventually an operator might activate this control. For example, if an On-

Off button is not protected from unintentional actuation, we should assume that this will eventually happen. 

Controls that have an immediate irreversible effect on the system behavior should be protected from accidental 

actuation. The protection may be by restricting the access to the control: 

 By hardware, namely using a special cover, or  

 By software, by prompting the operator to confirm the risky function. 

The risk: applying the proper control in the wrong mode.  This risk is typical of functional overload of 

controls. System designers are tempted to save controls and panel space by overloading similar functions on the 

same control. The operator can actuate the proper function by selection of the appropriate mode. Moreover, 

certain software development methodologies, such as state-chart and use case specification, and object-oriented 

design, encourage mode dependent response specification and design. The problem is that the operators do not 

always keep track of the mode changes, and eventually they operate the mode-dependent controls in the wrong 

mode. The example of unintentional missile launch demonstrates the risks of mode dependent functions. 

Whenever possible, controls should be allocated to single functions. If a control should be not be active certain 

modes, then safety means should be designed to inform the operator about attempting to activate the control in a 

wrong mode. 

When several functions are assigned to the same control, then safety means should be designed to prevent 

activation of the control in an unintended mode. The safety means may include: 

 Control modulation: assigning controls to objects (in an object-oriented interaction design) or to scenarios 

(in a scenario-based interaction design), such that each control is assigned with a single function. 

 Event threading: a technique of event duplication, such that each copy of the event actuate a single function. 

 Warning the operators about the activation of risky functions 

 Feedback to the operator about the function that was actually activated. 

The risk: incomplete specification.  This risk is typical of complex systems. The number of system states is an 

exponential function of the number of states. Therefore, if the system behavior depends on numerous states, then 

the number of possible states is enormous, and it is impractical to specify the system behavior in all possible 

states. Subsequently, if the system behavior is not specified for a particular state, then system behavior when in 

this particular state is unpredictable. An example of surprise due to incomplete specification is that of the 

Therac-25 accidents.  

Incomplete specification is also a problem of very simple designs, such as that of the Torrey Canyon accident. 

The system specification should include a description of default behavior. The default behavior should be the 

safest for the particular system. The description may include a method for recording the event details, displaying 

information about the event to the stakeholders, and a common recovery procedure. 

The decision about the safest default behavior is challenging. For example, Leveson (2004) has reported on an 

accident in a chemical processing plant due to freezing the system in response to an exceptional situation.  

The risk: automatic problem solving.  Automation often results in the system taking the control from the 

operators. Sometimes, this results in an accident, such as that of AF 296. Analysis of these accidents reveals that 

they are typical to situations of problem solving, in which the operators are not aware of the problem. This was 

the case of AF 296 and of three aircraft accidents, reported by Norman (1990). 



 

  

The system may help with the problem solving by automation, as long as it provides feedback about it to the 

human operator. 

The risk: state mismatch.  In many incidents and accidents, the system entered an unstable state prior to the 

unexpected event. This was the case of the Therac 25 accidents, and many cases of friendly fire.  

An unstable system state is a term used to describe a situation of state mismatch between two or more system 

units. This means that a system unit, which should be „aware‟ of the state another system unit, „perceives‟ it 

wrongly. This kind of mismatch is most common in a generalized system, when the human operator is 

considered as an intelligent system unit. The human operator might misconceive the system state due to various 

reasons, such as lack of feedback, attention focus on other tasks, vigilance problem etc.  

The design should include means to avoid state mismatch. The means may include: 

 State modularity: only one unit manages a system states; all the others may inquire the state when they need 

it. For example, the system may prompt the operator to specify their intention when this is required for the 

operation. 

 State synchronization: On a change in any of the system states, the unit that changes the state may broadcast 

to the other units about the change, and the other units should confirm the update, to ensure synchronization. 

STAGE 6 – RESPONDING TO UNEXPECTED EVENTS 

We cannot totally avoid unexpected events, and we always need to “prepare for the unprepared” (Paries, 2010). 

This document provides guidelines for reducing the damage of unexpected events that we failed to avoid. 

Overview.  The method proposed for responding to unexpected events is based on the Swiss Cheese model by 

Reason (1997). According to this model, we need to identify the “safe holes” and to add protection means for 

each of them. The “cheese slices” used for preparing to the unprepared are according to the following chart: 

 

Detecting Constrain Violation.  Following the STAMP model (Leveson, 2004), unexpected events involve 

constrain violation. The constraints describing normal system operation may be defined according to the 

document of milestone 2, by operational scenarios. Methods for detecting constrain violation are described in 

the document of milestone 3. 

Automatic Response.  A key dilemma in system design is about the way that the system should respond to 

unexpected event. Examples of response strategies are: 

 Scam: brute-force stop of the main activity, as in nuclear power plants. 

 Freeze: the objective is to enable reliable investigation of the sources for the unexpected event 

 Continue normally: this strategy is the only option for many real-time systems, such as aircrafts.  

Any decision about this dilemma is a kind of gamble, because the events are unexpected, and we cannot know 



 

  

the consequences in advance. For example, Leveson (2004) reported on an explosion in a chemical plant due to 

freezing in a transient state. 

Recovery.  Recovery from the unexpected event is a three stage procedure: 

 Feedback: the system notifies the operator about the event 

 Troubleshooting: the operator finds the source for the exceptional state 

 Resumption: the operator enables resumption of the normal operation. 

Feedback design.  The feedback design should take care of the following subjects: 

 Visibility and audibility: make sure that the operators notice the feedback, in all possible operational 

conditions 

 Low rate of false alarms: tune the level of false alarms such that the operators respond to them properly 

 Sense of emergency: set the alarms in a way that they alert on immediate risks, and are informative on 

potential risks.  

Troubleshooting design.  An example of the troubleshooting problem is the Three Miles Island (TMI) nuclear 

power accident in 1979. The system provided too many warnings, but the operators failed to identify the source 

for these warnings. 

The challenge of troubleshooting design is to provide a single, exact directive to the source of the exceptional 

situation. If safety is not compromised, this means adding detectors about all possible malfunctions of all system 

components. Also, because the detectors can fail, the system should continuously test that they are still 

functional, and report about their failures. 

Many possible faults, such as gas leakage, cannot be detected directly. Troubleshooting such faults may be 

accomplished by trend analysis, based on measurements of process properties, such as temperature and pressure, 

and by comparison to simulator results. 

Resumption.  The resumption of the system operation may be automatic or manual. If the resumption is 

automatic, the system should provide salient indication about it, and the operator‟s confirmation may be 

required, to ensure that the operator is aware of the resumption. 

The system specification should include a definition of the starting point for the resumption.  

ESTING WITH USERS 

Due to the complexity of operational situations, it is not realistic to assume that we can identify all unexpected 

events during alpha testing. A more realistic approach is to verify at the alpha stage that the system is tolerant to 

unexpected events, and that the detection of the majority of unexpected events will be postponed to the field 

testing stage. 

The Testing Goal.  The testing goal is to identify the unexpected events as early in the development cycle as 

possible, in order to refine the system specifications, to handle exceptional situations. 

The Test Plan. The model for test generation may have two parts: 

 Manually crafted tests, for manually validating the software infrastructure for capturing and managing 

exceptional events,  

 Random computer-generated test cases for representatives of situations and event classes.  

A special flag may enable automatic recording of exceptional events at test time, instead of stopping the system 

operation, which is the proper response after the system deployment. 

Test-Case Generation. The preferred method of test-case generation depends on the kind of testing. For user 

testing, the test cases are derived from the user tasks, based on task analysis. For system testing, test case should 

be generated automatically, for all possible events, applied in all possible situations. 

Test-Case Complexity. Brute-force test-case generation is of exponential complexity. In order to find all 

unexpected events, we need to test the effect of all possible events in all possible situations. The test-case 

complexity (the number of test cases) is due to the huge number of possible situations, which is the number of 

specified scenarios multiplied by the product of the number of states that may exist in all state modules: 
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Fortunately, when using the inter-module state transition model, the test case complexity reduces drastically to:  





iosNuOfScenar

s

stionsNuOfTransisesNuOfTestCa
1

)(                                       (2) 

However, the number of test cases required is still too large to craft them manually.  

Evaluation. An unexpected event may be due to a bug or a design mistake. If the event is of an expected, yet 

exceptional situation, then it should be included in the procedure of a scenario describing the exceptional 

situation. For example, if due to a design mistake the specifications do not describe a scenario for managing 

intermittent power failures of a system component, then the unit reset after recovery would result in an 

exceptional event. The fact that the event is classified as unexpected implies that the specification, design and 

code should be checked, in order to find out the reasons for the wrong classification. In the example, this would 

imply the need to add a scenario.  

Test Management. Some of the exceptional events, specifically the user generated events, require the user 

confirmation in order to decide about a design change. This implies that the test should stop at each exceptional 

event. To enable uninterrupted testing, it would be desired that the test program decides on behalf of the user. 

The options are to either confirm the exceptional event, or to stop for evaluation. Automatic confirmation, 

recorded in a log file, enables freeing the tester from the tedious confirmation of repeating events. The 

disadvantage of this method is in case of an unexpected event due to a design mistake or a bug, in which the 

system might crash. 

Post-release Testing.  Post-release (field) testing may be based on automatic recording of the user activity on a 

log file at the customer site, and analysis at the tester site. The analysis employs special indicators of exceptional 

events, based on anecdotal models, and on special statistics for comparing the exceptional situations with 

normal situations. 
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