
Task-oriented System Engineering

Avigdor Zonnenshain

Rafael

P.O.Box 2250, Haifa 31021, Israel

Tel: +972 52 289 1773

avigdorz@rafael.co.il

Avi Harel

Ergolight Ltd.

6 Givon Str., Haifa 34335, Israel

Tel: +972 54 453 4501,

ergolight@gmail.com

Copyright © 2009 by Avigdor Zonnenshain and Avi Harel. Published and used by INCOSE with permission.

Abstract. Traditional system engineering (SE) is technology driven. In the design of interactive

systems we typically assume that the human operator traces the changes in the system states and

operates the system correctly. However, the human operator obeys different rules. The difference

between the designers‘ and the operator‘s rules often results in loss of productivity, decreased

performance and accidents, and eventually, loss of market share. In special cases, it makes sense

to demand that the user follows the designers‘ logic. However, in most projects, it is the designer

who needs to adapt to the user‘s logic. The article analyzes the limitations of common design

practices in resolving mismatches between the system and the user states. Complex system

engineering (CSE) is a framework suitable for handling the human operator as a critical system

component. This article presents a methodology for handling the human attributes in this

framework. The methodology extends the capability of common practices of user-centered

design and usability testing, which miss critical interdisciplinary issues. To resolve state

mismatches, the system engineers must be aware of the user‘s logic. Such knowledge should be

reflected in the system architecture, to ensure that the user interface provides protection against

unexpected user events and to facilitate the system operation in new situations, such as in

emergency. The methods and guidelines presented here are applicable to the whole development

cycle.

Technology-driven System Engineering

The logical gap. Traditional system engineering is technology driven. In the design of

interactive systems we typically assume that the human operator traces the changes in the system

states and operates the system correctly. However, the human operator obeys different rules (e.g.,

http://www.aesthetic-images.com/ebuie/usability_semantics.html). The gap between the

designers‘ and the operator‘s logic often results in loss of productivity, decreased performance

and accidents. Eventually, this might end up in losing a market share. We start with examples of

the risks of disregarding the user‘s logic.

Example: cable TV. A remote control of a cable TV system enables turning on and off and

changing the channels of both the TV set and the cable converter. A special button enables the

users to set to either TV or converter mode. The design seems logical and easy to understand.

Many users are willing to learn and follow this logic. Many others find it confusing. They often

forget to select the proper mode, resulting in them unintentionally turning the converter off or

http://www.aesthetic-images.com/ebuie/usability_semantics.html

setting the TV set to a wrong channel. They call customer support and report seeing snow on the

screen.

This example demonstrates the well known problem of system-user state mismatch. The

designer or the remote control unit assumed that the user will trace and notice the changes in the

TV/Converter modes of the remote control. The users, however, act carelessly, assuming that the

mode is according to their intentions. The design mistake is of assuming that the users behave

according to the designers‘ logic.

Traditional SE practices, as well as common usability engineering practices do not include

guidelines for avoiding mode dependent functions. Such guidelines could prevent or at least

reduce the chance for this kind of mode mismatch. Also, neither traditional SE practices nor

common usability engineering practices include guidelines for how to ensure that the users are

aware of the active mode in case of mode mismatch, and that they know how to resolve such

situations. This well known problem is orphan. Moreover, regular usability testing, based on

prototypes, is not very effective for identifying this kind of problems. It enables to detect

situations of negative user experience, but not to identify the state mismatch causing the negative

user experience. Special kind of usability tests of the user‘s behaviour are required to identify

state mismatch, involving tracing both the system states and the user‘s perception of the system

states.

The methodology introduced here includes methods and guidelines for preventing situations

of state mismatch, by reducing functional overload of user controls or by intelligent control

allocation. Also, the methodology incorporates methods for detecting and protecting from

unexpected user events by software, and for supporting the user in recovery procedures

(Zonnenshein & Harel, 2008).

Example: machine damage. A production line was designed to operate with coolant valve

open. Due to a transient power failure of the controller, the controller invoked an unusual

command sequence, and the production line started with the coolant valve closed.

This example demonstrates the problem of an intra-system state mismatch due to procedural

disorder. Both the controller and the unit worked according to the specifications. However, they

were not coordinated. The designers wrongly assumed that the system will never deviate from

the specified command sequence. The system was not designed to detect and protect from

deviations from this sequence.

Traditional SE practices may include guidelines for detecting such mismatches, but they do

not incorporate guidelines for notifying the operator about them. Neither traditional SE practices

nor common usability engineering practices provide guidelines for instructing the operator about

the recovery procedures.

The methodology introduced here includes methods and guidelines for detecting intra-system

state mismatches and for guiding the users in the recovery procedures (Zonnenshein & Harel,

2008).

Example: emergency operation. On March 28, 1979, the main feedback pumps in the

secondary cooling system of the Three Miles Island nuclear plant failed. Due to a design

mistake, a pressure valve did not close after being open, and the reactor became overheated. Due

to design mistakes, important indicators were missing. The scope of the accident became clear

over the course of five days, as a number of agencies at the local, state and federal levels tried to

diagnose the problem and decide whether the on-going accident required a full emergency

evacuation of the local community, if not the entire area to the west/southwest. There is

consensus that the accident was exacerbated by wrong decisions made because the operators

http://en.wikipedia.org/wiki/Nuclear_accident
http://en.wikipedia.org/wiki/Emergency_evacuation
http://en.wikipedia.org/wiki/Emergency_evacuation

were overwhelmed with information, much of it irrelevant, misleading or incorrect.

(http://en.wikipedia.org/wiki/Three_Mile_Island_accident).

This example demonstrates the problem of state ambiguity. The signals about the

problematic system situation did not indicate the cause for the exceptional values that the sensors

measured.

Technology driven SE practices, suited to the designer‘s logic, assume that the users can

investigate the sources for the exceptional situations, because they must know the rules. This

assumption is based on wishful thinking.

Troubleshooting is an interdisciplinary activity, intended to map the system situation into the

operator‘s mind. The methodology introduced here includes methods and guidelines for

automatic troubleshooting (Zonnenshein & Harel, 2008).

Traditional SE ignores usability. Typically, developers (e.g., programmers) who are fond of

technology are careless about user needs (Weinberg, 1971). Common SE practices do not target

the usability requirements. Too many products fail due to usability limitations after being

qualified by formal QA procedures: because they are useless, because they are too complex to

use, because the enable critical user errors. Too many systems intended to protect home security

installations work perfectly at the QA qualification stage, but fail when they are needed, because

psychological aspects were not considered at the design phase. Too much time we waste trying

to find out why the software behaves so strangely, or what should we do in order that the TV will

show a picture other than that of falling snow.

Blaming the users. It is typical to technology driven engineers to blame the users for not

following the designers‘ instructions or intentions, for behaving illogically. Often, we can hear

frustrated engineers suggesting that the customer should change the user. This approach is

convenient for the developers. However, blaming the users often ends up in overlooking the

reasons for the user‘s errors, enabling the users to repeat the errors. We cannot change the user.

However, we can change the design. It is the system manufacturers‘ responsibility to prevent

user errors, and if the design is error prone, it is the developer who should be blamed (e.g.

http://www.efluxmedia.com/news_Whos_To_Blame_In_Deadly_Train_Collision_25718.html).

Interdisciplinary problem. It is typical to technology driven engineers to focus on

technological aspects of the system and to let somebody else consider the human factors. The

problem with this approach is that interaction failures are due to tight interdisciplinary coupling.

For example, in order to ensure seamless operation of a cable TV, the system engineer has to be

aware of the drawbacks of functional control overload, and to require that the usability engineer

will find ways to prevent state mismatch. Also, in order to prevent machine damage as in the

second example, the system engineer needs to inform the usability engineers about all known

failure modes, as well as about recovery procedures. And, in order to prevent accidents such as

that of the TMI nuclear plant, the usability engineer should be informed about of all the possible

system failures, and the means provided to identify them.

Blaming the system engineers. In order to prevent similar mishaps, somebody who knows how

the system might fail needs to communicate the knowledge with the user interface designers.

Typically, it is the system engineer who is in charge of preventing and mitigating the risks of all

sources of system failures, including those generated by the human operator. If the user is liable

to make a mistake, and the means to mitigating the risks of such mistakes are known, then it is

the system engineer who should be blamed for the resulting mishaps.

http://en.wikipedia.org/wiki/Three_Mile_Island_accident
http://www.amazon.com/Psychology-Computer-Programming-Silver-Anniversary/dp/0932633420
http://www.efluxmedia.com/news_Whos_To_Blame_In_Deadly_Train_Collision_25718.html

Feature-oriented engineering. Disciplined system development begins with task analysis. We

formalize the user‘s goals and we break them down to minitasks. Next, we implement the

minitasks. Each minitask is transformed into a feature. Technology driven engineering is feature

oriented. This means that at this point we stop thinking about the user tasks. We deal only with

features derived from the minitasks. Now, it is the user‘s responsibility to get the proper feature

at each stage of the interaction.

State compatibility. In many practical systems, many of the features provided behave

differently in different system states. When a state-dependent feature is invoked, the user needs

to be aware of the state: to make sure that the system is in the proper state, enabling the desired

feature variant. Otherwise, if the user fails to trace the system state or to verify that the system is

in the proper state, the wrong feature will be actuated.

State-dependent features provide many opportunities for proving the validity of Murphy‘s law

(http://en.wikipedia.org/wiki/Murphys_law). Most operational failures attributed to user errors

are due to the user‘s failure to verify that the system is in the proper state. Many examples of use

system mismatch may be found in http://www.ergolight-sw.com/CHI/Company/Articles/ESE-

Incose2008-P192.pdf

The operational database. The operational database consists of the system states and the

operational procedures. Formally, an operational procedure may be represented as a directed

graph, in which the nodes represent state dependency and the arcs represent the system features.

Each branch in the directed graph represents an operational scenario, namely, a sequence of

features, conditioned by the system states.

At design time, the designers of the operational procedures define a limited set of system

states. It is assumed that in run time, the users may know, remember and recognize the system

states. This assumption is valid only for very simple systems. In practice, even the system

designers do not remember all the details about the state changes and the state dependency.

At test time, after suitable training, the testers of the user interface may manage to verify that

they operate in the proper system state.

At run time, the human operators typically know the details required for executing main tasks,

namely, tasks that they need to repeat frequently. However, unlike the testers, the users access

only a small subset of the operational database. For example, because emergency situations are

rare, the users do not have a chance to exercise the emergency procedures beforehand. Unless the

users have a special training program, they cannot remember all the details required to operate

the emergency procedures successfully.

The operational context. The testers of the user interface operate in well defined scenarios, in

which they manage to trace the state changes, and they can take the time required to verify that

the system state suits their intention. This is not true for run-time operation. Besides the system

operation, the human operators are typically engaged in many other tasks. Consequently, they

might miss opportunities to perceive changes in the system state. Being busy doing other tasks,

they might also forget that they need to check the system state. Consequently, they make

mistakes.

The user’s logic. It is too easy to blame the users for being illogical. They are, but their logic is

different from that of the designers. Logical reasoning depends on data and on rules. The logical

gap is due to differences in the operational and context databases, and in the method used

employing the rules in decision making. Suppose that the user does not recall the condition for a

particular procedure step. Unlike system testers, who cannot complete the test procedure until

http://en.wikipedia.org/wiki/Murphys_law
http://www.ergolight-sw.com/CHI/Company/Articles/ESE-Incose2008-P192.pdf
http://www.ergolight-sw.com/CHI/Company/Articles/ESE-Incose2008-P192.pdf

they believe they know the condition and its effect, the system operator needs to decide based on

partial information. Testers need to follow deterministic logic. They need to follow the rules,

whether they are documented or elicited from the designers. On the contrary, run-time operators

need to apply fuzzy logic. They do not have designers around them to enquire about state

recognition and state dependency, to help them identify the current system state and to instruct

them how to proceed. They may have already searched the operational instructions, or they

already know that not all the details are documented in the manual or the Help system. Yet, they

need to decide, based on partial information. They do not have the privilege of testers. Often,

under time stress, they need to gamble. Ad-hoc, in accident investigation, if we wrongly assume

that they know and remember the operational procedures, their decisions often might seem

illogical.

 Limitations of Technology-driven SE

Common SE practices fail to prevent mishaps as those described above. The reason for this is

that common SE practices persistently ignore the most critical system component, namely, the

human operator (Case, 1997). The bottleneck for achieving high levels of productivity and safety

is the human operators, who often fail to follow the designers‘ instructions and expectations. In

order to deal with this bottleneck, we need to include the human operator in the system model.

We need to consider the properties of the user and to take care of the user‘s failure modes.

The International Council on Systems Engineering (INCOSE) defines system engineering as

“ an interdisciplinary approach and means to enable the realization of successful systems.”

This definition suggests that usability, being a discipline required for the realization of successful

systems, is part of system engineering. Still, common SE practices fail to prevent mishaps as

those described above. Why? Because it is common practice to assume that the run-time user

will operate the system according to the designers‘ expectations. It is common practice to focus

on technology, ignoring cognitive aspects of the interaction.

Sources of the usability gap. Everybody in the system development team expects that it will be

usable. Yet, it rarely happens. Berkun (http://www.scottberkun.com/essays/22-the-list-of-

reasons-ease-of-use-doesnt-happen-on-engineering-projects/) provided a list for why systems are

not always easy to use. This section provides an overview of the forces within the system

development team that act against usability, and proposes that customer utility should be set as

the main goal. It should be commented that naturally, many system engineers deny the kind of

critics that this section might hinder (one of the reviewers commented that the article overuses

cartoons as sources).

The developer's intuition. “An intuitive interface asks no more of the user than what they

either already know, or can immediately deduce from previous life experience. Implied is that

intuition is wisdom assumed and shared within a community — the community of users familiar

with the task and with the environment in which it is performed‖ (Buie and Vallone, 1997). The

usability problem results from the developers' intuition, that of highly skilled users, being applied

to regular users, who are not familiar with the system behavior (Martin cartoon:

http://www.nevtron.si/borderline/archive2/intuiti.gif). After getting used to the prototype,

developers typically judge the system behavior as experienced users (e.g., Dilbert cartoon:

http://web.mit.edu/is/usability/IAP/2003/Session1/Images/ctrl-alt.gif). For them, the system

behavior is obvious, and they fail to understand why a user, who sees a certain feature for the

../../../Documents%20and%20Settings/avigdorz/Local%20Settings/Temporary%20Internet%20Files/OLK28/Scott%20Berkun%20-%20http:/www.scottberkun.com/essays/22-the-list-of-reasons-ease-of-use-doesnt-happen-on-engineering-projects/
../../../Documents%20and%20Settings/avigdorz/Local%20Settings/Temporary%20Internet%20Files/OLK28/Scott%20Berkun%20-%20http:/www.scottberkun.com/essays/22-the-list-of-reasons-ease-of-use-doesnt-happen-on-engineering-projects/
http://www.aesthetic-images.com/ebuie/larger_vision.html
../2008/ESE/Martin%20cartoon:%20http:/www.nevtron.si/borderline/archive2/intuiti.gif
../2008/ESE/Martin%20cartoon:%20http:/www.nevtron.si/borderline/archive2/intuiti.gif
http://web.mit.edu/is/usability/IAP/2003/Session1/Images/ctrl-alt.gif
http://web.mit.edu/is/usability/IAP/2003/Session1/Images/ctrl-alt.gif

first time, would not realize what it should do, and how (e.g. Dilbert cartoon:

http://web.mit.edu/is/usability/IAP/2003/Session1/Images/Stupid-users.gif).

Designers Creativity. UI designers do not always promote usability: simple UI appearance,

easy look and feel might often be boring for some designers. For example, website designers

love to apply flash technology, which is 99% bad (Nielsen alertbox:

http://www.useit.com/alertbox/20001029.html).

Complex System Engineering

The Extended System. The extended system describes the customers‘ view of the system.

Typically, the customers may be interested in technical features and in functional features, such

as performance and reliability, but eventually, they need to know if the users can complete their

tasks in time, how reliably they do their jobs and what are the safety levels involved. Therefore,

besides the system under development, the extended system includes also the user and the user

interaction with the system, as demonstrated in the following chart:

Typically, the user is a critical intelligent, self-adaptive element of the extended system,

which suggests that we impose the framework of CSE on the extended system.

We apply here the framework of CSE, in which the user is a critical system component. CSE

processes and methods should be applied when the system to be developed is associated with the

following:

 Cognitive, self-adapting elements (e.g., humans or very smart computers) are present within

the system.

 Emergent behavior is dominant and will significantly influence the system's performance and

effectiveness (this is often a direct result of the previous point)

 Elements of the system are added, removed, or functionally modified during the scenario

(human operators often do this)

 The environment and interfacing systems will change and are not completely known at the

time of development

 The system development and its funding are not under a single, central authority. Many

change agents are at work.

http://web.mit.edu/is/usability/IAP/2003/Session1/Images/Stupid-users.gif
http://web.mit.edu/is/usability/IAP/2003/Session1/Images/Stupid-users.gif
http://www.useit.com/alertbox/20001029.html
http://www.useit.com/alertbox/20001029.html

 The system is sufficiently complex, so that exhaustive testing of all possible combinations of

inputs and all possible human operator interactions is not feasible.

The original framework of CSE deals with the properties common to users and intelligent sub

systems (e.g., Oliver et al., 1997). Instead, few techniques for interaction definition, such as

protocol definition and methods for error detection, are similar. Also, few of the most powerful

principles and means employed for usability assurance are also applicable to secure the

interaction between any elements of any complex system, regardless of their intelligence. On the

other hand, there are specific characteristics of the human operators, such as the perception of

warning signals, which require special treatment.

Our approach emphasizes that the users‘ logic is different from that of intelligent sub systems,

which is derived from that of the designers. Intelligent systems will always behave as engineers

instruct them to do. Typically, they are deterministic and their behavior seems logical. However,

this logic is based on a limited database, namely, the knowledge that the engineers managed to

formulate as rules. The behavior of the human operators is also logical, but their logic is

unknown to the developers, for two reasons: First, because it relies on a huge database, which

has been accumulated during years of experience in managing various kinds of situations.

Second, because the users need to decide based on partial information, and therefore they need to

gamble. These differences motivate the need for the methodology introduced here. In our

approach, the design of interactive systems should consider the special features of the user‘s

logic.

 The Quality of Interactive Systems

How does the quality of interactive systems differ from that of automated systems?

The definition of quality of automated systems is built bottom up. We define performance,

reliability, recovery costs of the system units, and we compute these attributes for the whole

system using mathematical manipulations. The quality of interactive systems is defined in terms

of the user tasks. To evaluate the impact of the human operator on the system utility, we need to

evaluate the barriers to system efficiency and reliability. Research on Human Factors suggests

that focusing on system performance and reliability is practically useless, unless we also take

special care of the user performance and reliability:

 Performance. The time required for the operators to evaluate the system state and decide

what to do next is typically higher by an order of magnitude than the system response time.

Instead of measuring the system response time, we should measure the time elapsed from the

moment the user decides to perform a task until its completion. Typically, most of the elapsed

time is wasted because the user fails to follow the operational procedures, attempting to

recover from unwanted system response to unexpected actions. SE should regard user

productivity, rather than system performance (Landauer, 1993).

 Reliability. The operators MTBF is about 10% of the overall operation time, higher by

several orders of magnitude than that of the system. Instead of measuring component failure

rates, such as by MTBF, we should measure operational failure rates, such as the rate of

almost-accidents due to user errors. This is especially true for safety-critical systems, in which

the costs of an accident are much higher than those of maintenance. Operational reliability is

the key to task performance. (Example: http://www.jnd.org/dn.mss/commentary_huma.html).

 Recovery costs. The operators' MTTR is about 50% of the overall operation time, higher by

several orders of magnitude than that of the system. Instead of measuring maintenance costs,

http://www.amazon.com/Trouble-Computers-Usefulness-Usability-Productivity/dp/0262621088
http://www.jnd.org/dn.mss/commentary_huma.html

such as by MTTR, we should measure the time it takes for the users to recover from system

failures.

 Logic. An application that is logical in its internal design and produces accurate results may

nevertheless be difficult to use. The reason for this is that logic is not absolute. It is subjective,

it is task related, and it changes over time. Typically, it applies to the internals of the

application. Therefore, the user has difficulty following the developer‘s logic. (Buie and

Vallone: http://www.aesthetic-images.com/ebuie/larger_vision.html).

Managing the risks of usability deficiencies

The method proposed here for usability assurance is based on the common methodology of risk

management. Risk management is a structured approach to managing uncertainty related to a

threat, a sequence of human activities including: risk assessment, strategies development to

manage it, and mitigation of risk using managerial resources.

(http://en.wikipedia.org/wiki/Risk_management#Risk_retention). The previous section

demonstrates the risk assessment of usability defects. The remaining of this article discusses

strategies for managing these risks, and the implied requirements for managerial resources.

Potential risk treatments. Once risks have been identified and assessed, all techniques to

manage the risk fall into one or more of these four major categories (Dorfman, 2007):

 Avoidance (eliminate)

 Reduction (mitigate)

 Transference (outsource or insure)

 Retention (accept and budget)

Barriers to risk treatments. In order to apply the treatments we need to have the management

support in adopting a new strategy, which often contradicts the traditional strategies:

Marketing-oriented engineering. People often confuse usability with marketing. However,

marketing needs often conflict with usability (Dilbert cartoon:

http://www.guuui.com/images/20030209.gif). The problem is that marketing follows the user‘s

buying forces, which are different from their usability needs. For example, when applying

banners in marketing campaigns, we intentionally distract the users from their original goals, in

favor of the marketing goals. Marketing managers think of attracting potential customers,

disregarding the actual customers (Dilbert cartoon: http://www.idblog.org/images/dilbert6-1.gif).

They encourage usage of gimmicks, such as splash screens, to highlight new features that sell,

regardless of the facts that these gimmicks hamper seamless operation. Marketing forces are

according to the customers‘ wills, which are different from the users‘ needs. For example, a key

feature that ensures usability is simplicity. However, marketing managers encourage complexity

(http://www.joelonsoftware.com/items/2006/12/09.html). Leading usability practitioners have

already noticed that people are not willing to pay for a system that looks simpler, because it

looks less capable. Even a fully automatic system should contain lots of buttons and knobs, to

make it look powerful (http://www.jnd.org/dn.mss/simplicity_is_highly.html). Before using a

product, people will judge its desirability and quality based on ‗what it does‘ (i.e. the number of

features). Even though they may be aware that usability is likely to suffer, they will mostly

choose products with many features. After having used these products however, usability will

start to matter more than features and people will choose easy-to-use products over products with

many features. The dilemma is that in order to maximize initial sales one needs to build products

with many features, products that do lots of ―stuff‖. But in order to maximize repeat sales,

http://www.aesthetic-images.com/ebuie/larger_vision.html
http://www.aesthetic-images.com/ebuie/larger_vision.html
http://en.wikipedia.org/wiki/Risk_management#Risk_retention
http://www.guuui.com/images/20030209.gif
http://www.guuui.com/images/20030209.gif
http://www.idblog.org/images/dilbert6-1.gif
http://www.joelonsoftware.com/items/2006/12/09.html
http://www.jnd.org/dn.mss/simplicity_is_highly.html

customer satisfaction and retention, one needs to prioritize ease-of-use over features

(http://www.lukew.com/ff/entry.asp?433).

Customer-oriented engineering. By disregarding usability, marketing managers often

encourage developing systems that are difficult to use. Sometimes, however, they are right in

doing so, because they do what the customers want, which is often not what they need. How

should we balance usability against marketing? How can we conclude which of the two factors is

more significant? The answer depends on the utility for the customers. However, even when

marketing is considered more important, usability should be considered. For example, suppose

that in order that the system looks powerful, the customers demand many features, and that all of

them are apparent and easy to access. Still, usability engineering may enforce virtual simplicity,

by highlighting the essential features and by separating them from the nice-to-have features.

Usability Engineering – UE

Usability engineering is the discipline for assuring the system's usability. Usability engineering

implements human factors throughout the various disciplines involved in system engineering, to

ensure that the system operation is fluent, efficient, reliable and safe. It is a cost-effective, user-

centered process that ensures a high level of effectiveness, efficiency, and safety in complex

interactive systems. Usability engineering is a structured, iterative, stepwise development

process. Like the related disciplines of software and systems engineering, usability engineering is

a combination of management principals and techniques, formal and semiformal evaluation

techniques, and computerized tools.

Definition of system usability. Usability is defined in many different ways, most of them

emphasizing ease of use. The Usability Professional Association (UPA) defines usability as the

degree to which something - software, hardware or anything else - is easy to use and a good fit

for the people who use it (http://upassoc.org/usability_resources/about_usability/index.html) .

The examples above demonstrate that usability is much more than ease of use. ISO 9241-11

adds aspects of effectiveness and efficiency, defining usability as:

" the extent to which a product can be used by specified users to achieve specified

goals with effectiveness, efficiency and satisfaction in a specified context of use.”

However, our methodology is about another aspect of usability, namely, the human factors

affecting the system utility.

Utility Assurance. Task-oriented SE enables maximizing the customer‘s utility in the long run.

The utility function can be described as in the following chart:

http://www.lukew.com/ff/entry.asp?433
http://upassoc.org/usability_resources/about_usability/index.html

The utility function has two phases: The startup and the main phase. The startup phase begins

with the initial usage of the system and ends with the utility function reaching maximum utility.

The initial value of the utility function is determined by the intuitivity of the user interface. The

slope from the initial value to the maximum value is determined by the ease of learning.

Following the startup phase is the beginning of the main phase, in which the utility function

stabilizes. Then the system utility gradually decreases. The reasons for utility decrease include

hardware reliability and maintenance costs, well know in common QA. Additional reasons for

the decrease of the system utility may be attributed to human factors, such as user errors and the

user‘s capability to handle system failures.

Task-oriented System Engineering

Traditionally, usability engineering focuses on the system intuitivity and ease of learning, which

are features of the startup phase. Eventually, common usability practices are adequate to deal

with these aspects and are of low value when dealing with the main phase of the utility function.

Common QA practices on the other hand, are applicable to the main phase. However, they focus

on technical aspects of the system, disregarding the user‘s role. The human factors that affect the

main phase of the system utility are not considered by any of the common practices. This is why

and where we need to extend the system engineering.

Sources of User Difficulties. The Task-oriented SE considers two sources of user difficulties:

 User errors

 User incapability to handle system failures.

An example of an accident due to a user error is the ecological disaster of 1967 caused by the

Torrey Canyon supertanker (http://en.wikipedia.org/wiki/Torrey_Canyon). The accident was due

to a combination of several exceptional events, the result of which was that the supertanker was

heading directly to the rocks. At that point, the captain failed to change the course because the

steering control lever was inadvertently set to the Control position, which disconnected the

rudder from the wheel at the helm (Casey, 1998).

http://en.wikipedia.org/wiki/Torrey_Canyon
http://www.amazon.com/Set-Phasers-Stun-Design-Technology/dp/0963617885/ref=sr_1_1/002-2868787-8327205?ie=UTF8&s=books&qid=1185553664&sr=1-1

Examples of the second type are the TMI accident described above, the NYC blackout following

a storm (http://en.wikipedia.org/wiki/New_York_City_blackout_of_1977) and the chemical

plant disaster in Bhopal, India (http://en.wikipedia.org/wiki/Bhopal_Disaster).

Iterative design. Task-oriented SE is based on iterative design. In Technology-driven SE, the

iterations enable changes in the specifications and design during the system testing. In Task-

oriented SE, they enable early changes through prototyping and late changes following usability

testing. The details of integrating usability engineering in SE are presented in Zonnenshein &

Harel (2008).

Conclusion
Task-oriented SE enables us to make sure that the users not only use the system according to

the specification, but also according to the customer‘s expectation. In particular, the Task-

oriented SE approach presented here enables us to avoid user confusion and to defend the system

from exceptional user events.

Bibliography
1. Buie, E., A., and Vallone, A. Integrating HCI engineering with software engineering: A call

to a larger vision. In Smith, M. J., Salvendy, G., & Koubek, R. J. (Eds.), Design of

Computing Systems: Social and Ergonomic Considerations (Proceedings of the Seventh

International Conference on Human-Computer Interaction), Volume 2. Amsterdam, the

Netherlands: Elsevier Science Publishers, 1997, pp. 525-530.

2. Case, S. E. Towards user-centered software engineering. Proceedings of Usability

Engineering 2: Measurement and Methods (UE2). Gaithersburg, MD, March, 1997, tbd

pages.

3. Casey, S. "Set Phasers on Stun", Aegean Publishing: Santa Barbara, 1998

4. Dorfman, M., S. Introduction to Risk Management and Insurance (9th Edition). Englewood

Cliffs, N.J: Prentice Hall. ISBN 0-13-224227-3. 2007

5. Dumas, J.S. and Redish, J.C., “A Practical Guide to Usability Testing”, Exeter, England;

Portland, Or.: Intellect Books, 1999

6. Landawer, T.K., “The Trouble with Computers: Usefulness, Usability, and Productivity”,

MIT Press, 1993

7. Leventhal, L., and Barnes J., Usability Engineering, Process, Products & Examples, Pearson

Education, Inc., Pearson Prentice Hall, 2008.

8. Oliver, D. W., Kelliher, T.P., and Keegan, J.G., Engineering Complex Systems with Models

and Objects. McGraw-Hill, New York, 1997

9. Paech, B., and Kohler, K., "Usability Engineering integrated with Requirements

Engineering" ICSE Workshop "Bridging the Gap between Software Engineering and

Human-Computer Interaction" 2003

10. Zonnenshein, A. & Harel, A, ―Extended System Engineering – ESE: Integrating Usability

Engineering in System Engineering‖. Poster presented at Incose International Symposium,

Utrecht, The Netherlands, 2008. http://www.ergolight-sw.com/CHI/Company/Articles/ESE-

Incose2008-P192.pdf

http://en.wikipedia.org/wiki/New_York_City_blackout_of_1977
http://en.wikipedia.org/wiki/Bhopal_Disaster
http://palette.ecn.purdue.edu/~salvendy/hci97/
http://palette.ecn.purdue.edu/~salvendy/hci97/
http://en.wikipedia.org/wiki/Special:BookSources/0132242273
http://www.ergolight-sw.com/CHI/Company/Articles/ESE-Incose2008-P192.pdf
http://www.ergolight-sw.com/CHI/Company/Articles/ESE-Incose2008-P192.pdf

Appendix: The Usability Gap

The following table summarizes usability considerations typically missing from SE disciplines:

 Technology-driven Practices Typical Logical Gap

System

analysis

Excessive features satisfying

marketing demands.

Users are slow. They fail to find the feature they need in time

System

specification

Using SysML features Popular SysML features hamper usability assurance:

Event-

response

definition

By use-cases Enables user errors resulting in system failure:

 Events that are unexpected and unacceptable in certain

system states

 System states that do not match the operational procedures

State

definition

By state charts Encourage mode-dependent system behavior, which enables

mode errors

System

architecture

Limited set of master requests Unlimited opportunities for user errors.

 The system fails due to user errors

Interaction

analysis

This is an informal activity.

Operational procedures

remain undefined. Users are

expected to know the rules,

although these are not defined

yet.

Users unable to find the features they need, they do not know

which option to select and what values to set.

Interaction

specification

and design

Informal based on use-cases,

or by rapid prototyping by

software experts

 Users do not follow the developer‘s intentions

 Implements the error-prone mode-dependency

UI design Attractors, such as animation,

based on availability.
 Users distracted from their intentions

 Users struggle to get their needs

Risk analysis We focus on preventing

system failures.

The system is not protected well against user errors. Mainly,

the problem is that users fail to follow the system modes.

(http://en.wikipedia.org/wiki/Mode_error)

System

failure

protection

We protect against expected

failures.
 Users do not perceive the failure situation

 Users do not recognize the system state

 Users do not know how to resolve the problem

Error

prevention

We assume users operate

according to our intentions or

instructions.

We assume that users do not

make mistakes and do not err

 Users model of the system is different from ours

 Users make errors (Martin's cartoon:

http://www.nevtron.si/borderline/delete.gif), often

resulting in system failure.

User failure

protection

We protect from risky events

and from risky states

User events are sometimes unexpected, resulting in

unexpected risky system states.

Testing We assume that the users

follow the (often

undocumented) operational

instructions

 Users operate not as presumed

 The system does not handle unexpected user events

 Critically risky unexpected user events not identified

http://en.wikipedia.org/wiki/Mode_error
http://www.nevtron.si/borderline/delete.gif
http://www.nevtron.si/borderline/delete.gif

