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Abstract. Interaction faults are operational failures attributed to improper interaction 
between system components. A special, very important case is when at least one of 
the system components is a human operator. For example, 60-80 percents of the 
accidents are due to user errors. This article presents guidelines for preventing and 
protecting from interaction faults. 

Did you ever wonder why interactive systems are typically error-prone and why 
system development is typically behind schedule? Interaction faults are a main source 
for productivity and maintenance loss, for customer dissatisfaction, for accidents and 
eventually, project failure and shortening the system life cycles.  Interaction faults are 
actually the results of design defects. The article shows that the effort required to 
handle exceptional events is in an order of magnitude more than that for conforming 
to the requirements for normal operation.  

A special, very important type of interaction faults is of state mismatch. The first 
section presents examples of various types of interaction faults, and the design defects 
that caused these faults.   

Standards are essential for defending against user errors, because developers often 
feel irresponsible for user errors and typically avoid fixing the design mistakes that 
enable these errors. Yet, many of the standards proposed here may also help for the 
interaction between non-human system elements. 

An interaction fault is preceded by a trigger, which is a deviation of one of the 
interacting subsystems from the normal operational procedure. The article provides 
guidelines for preventing triggers attributed to user errors of two sources: usability 
mismatch and user slips. Few methods for preventing mode errors were tested using 
ModeTester, an experiment interaction specification tool by ErgoLight.  

To detect interaction faults, the system may include an implementation of a 
protocol formalizing the operational procedures. The standards should provide 
guidelines for specifying the system behavior in cases of deviations from this 
protocol, in order to avoid the unpredictable results of operating in the unexpected 
circumstances. 

From each incident, we can learn. The standards should include guidelines about  
enabling learning from incidents and from accidents. 

Recently, the Standards Institute of Israel (SII) joined the international effort for 
usability standardization. Besides adopting international usability standards, which 
target usability practitioners, the Israeli chapter initiates standards that will target 
system engineers as well. In particular, the intention is to elaborate and formalize the 
guidelines and methods presented in this article, to help system engineers defend the 
system against interaction faults. 

More about interaction faults: 
http://www.usability-standards.com/English/Interaction-Fault/ 



Interaction Faults  
Definition of interaction faults  

Consider a system consisting of several units, each of them designed and tested 
according to the requirement specification and each of them working perfectly. 
Suppose that a first system unit requests an action from a second unit. Suppose that 
the second unit is in a state in which this function has not been defined, and 
consequently the system crashes. This is an example of an interaction fault.  

An interaction fault is an incident of an undesired reaction to an action 
request, due to violation of a design assumption. 

Example: Machine damage. A production line was designed to operate with coolant 
valve open. Due to a transient power failure of the controller, the controller invoked 
an unusual command sequence, and the production line started with the coolant valve 
closed. 

This is an example of an interaction fault due to procedural disorder. Both the 
controller and the unit worked according to the specifications. However, they were 
not coordinated. The designers wrongly assumed that the system will never deviate 
from the specified command sequence. The system was not designed to detect and 
protect from deviations from this sequence. This kind of interaction faults can be 
avoided by applying standards for scenario-based interaction protocols.  

Interaction faults due to state mismatch 

A very important special case of interaction faults is of state mismatch, namely, when 
a system designed and tested to work on specific state patterns happens to be in a state 
pattern not specified in the requirements documents.  

Example: Therac-25 was a radiation therapy machine. It was involved with at least 
six known accidents between 1985 and 1987, in which patients were given massive 
overdoses of radiation. At least five patients died of the overdoses . The accidents 
were due to an interaction fault in a particular operational pattern, in which the system 
responded too slowly to the operator�s commands (Casey, 1998 - Set Phasers on 
Stun). The accidents occurred when the system activated the radiation beam while in 
the exceptional state (Leveson, 1985). 

This is an example of an interaction fault due to state mismatch between two 
simple system units. Each of the units could work perfectly, according to the 
specifications, but they were not synchronized. This kind of interaction faults can be 
avoided by implementing standards for assuring state synchronization.  
The completeness problem: When the system state is unexpected, then the system 
response is unpredictable. The reason for this is the completeness problem, namely, 
the failure to consider the risks of all state combinations. Exceptional states are 
typically defined by combinations of elementary states. The number of all possible 
combinations is an exponential function of the number of elementary states. This is 
the well know completeness problem, which states that it is impractical to expect that 
the design will consider all possible states.  

Human-machine interaction faults  

A most challenging special case of interaction faults is when the operators are 
regarded as system components. For example, suppose that the user of an interactive 



system went through an operational procedure, but missed one of the actions. 
Subsequently, the system entered an unexpected state and did not execute the proper 
command. This is an example of a human-system interaction fault.   

A human-machine interaction fault is a user action to which the system 
does not respond as the user expects. 

Example: Production waste. A graphical user interface (GUI) enabled the operator 
of a manufacturing system to control various parameters of several production lines. 
The design was based on the service-oriented architecture (SOA) paradigm, in which 
machines and other components are represented by objects, the parameters are 
represented by properties and the machine operation is implemented by methods that 
define the system services. A dedicated screen was designed for each object, enabling 
the operator to set any of the object properties and to actuate any of the methods.  

Many operators found this design logical. Sometimes, however, when they 
changed a production line, they forgot to change all the settings. To work around this 
problem they developed a verification test, to make sure that all the parameters were 
set correctly. Subsequently, they prepared check lists of parameters that should be set 
or reset for each production line. The check lists were implemented in the GUI next 
version, shortening the pre-production verification cycles significantly. 

This is an example of a human-machine interaction fault due to operational 
complexity, resulting in procedural disorder. The designer wrongly assumed that the 
operator will be very precise with the data entry. The system was not designed to 
detect and protect from deviations from the precise operation sequence. This kind of 
interaction faults can be avoided by implementing standards for resetting and setting 
default values.  

The operator as a system element. Traditional system engineering (SE) practices 
include measuring and considering the system performance and reliability, regardless 
of the system operators. This approach leads to wrong decisions about the system 
architecture and features, as the users typically impose significant limits on the system 
performance and reliability. For example, 60-80 percents of the accidents are 
attributed to human errors (Perrow, 1984). In order to model these limits, modern SE 
methodologies include the users in the system boundaries, regarding the users as 
intelligent system elements. With this approach, human-system interaction faults may 
be regarded as special cases of general interaction faults. 

Human-machine state mismatch  

An important special case of human-machine interaction faults is when the operators 
do not follow the system state. For example, suppose that the user of an interactive 
system activates a particular control, assuming that it will activate a particular 
function. Suppose that the user is not aware of the fact that the system is in a state for 
which this function has not been defined, and consequently the system crashes. This is 
an example of a human-system state mismatch.   

Human-machine state mismatch happens when a correct user action turns 
out to be improper, because the system was in an exceptional state 
(Norman, 1983).  

A well known example of human-machine state mismatch is in document editing, 
when the user unintentionally enters capital letters instead of small letters.  



Example: Air France Flight 296 was a chartered flight of a newly-delivered fly-by-
wire Airbus A320 operated by Air France. On June 26, 1988, as part of an air show it 
was scheduled to fly over Mulhouse-Habsheim Airport at a low speed with landing 
gear down at an altitude of 100 feet, but instead slowly descended to 30 feet before 
crashing into the tops of trees beyond the runway. Three passengers on board were 
killed. The accident was due to an interaction fault, in which the captain 
unknonwingly set the airplane to an exceptional state, in which the airplane engines 
did not respond immediately to acceleration commands (Casey, 1998 � Leap of 
Faith). 

This is an example of an human-machine interaction fault due to state mismatch, 
in which the user was not aware of system being in an exceptional state. This kind of 
interaction faults can be avoided by implementing standards for assuring the user 
awareness of changes in system states. 

States and Modes 

States. States are used extensively in system design to enable functional multiplexing. 
For example, the Caps keyboard mode is used in text editing to enable using the same 
letter keys for both small and capital letters. In the example of Therac-25, the radio 
therapy machine had two operational states: one of electronic beam and the other of 
X-ray. The states enable using the same machine for two types of radio therapy. 
Definitions. Formally, states may be defined as members (options, possible values) of 
a state variable, which is of enumeration type. In the Therac-25 example, the state 
variable was Radiation-Type and the states were the Electronic-beam and X-ray.  

Modes are a special kind of states, with an additional property: the user should be 
aware of them. The Therac-25 radiation types were actually operational modes, while 
the �target� positions were internal states, the existence of which was unknown to the 
operators. 

Complex Interaction Faults  
Consider the case of Therac-25 described above. By including the operator in the 

system boundaries, we actually extended the system to include three system elements: 
the two system units and the operator. Theoretically, to assure state compatibility, the 
operator might need to be aware of the state of each of the system units, and of the 
fact that they do not match. This approach leads to undesired operational complexity, 
increasing the chances for further state mismatches. 

Example: Unintentional missile launch. Consider the case of a military control 
system exercising missile operation. Assume that at the beginning of the exercise all 
units are set to Exercise mode, in which Fire commands are interpreted as user request 
for launch simulation. Also assume that at startup and reset, all units are automatically 
set to the Operational mode. Consider the case of a transient power failure in one of 
the missile units while in Exercise mode. On recovery, the missile mode is 
automatically reset to Operational. A Fire command at this stage should result in the 
unintentional missile launch. 

This is an example of an interaction fault due to state mismatch between two 
subsystems in a complex system. Each of the sub systems has its own operators. 
Assuming that each of the operators was aware of the local state, the subsystem state 
mismatch resulted in the operator�s state mismatch. Theoretically, this kind of 
interaction faults could be avoided by implementing usability methodologies for 



assuring the user awareness of changes in the states of all subsystems. However, this 
example also shows that sometimes it may be better if we keep the users outside the 
system boundaries, and let the subsystems synchronize automatically, without 
imposing extra workload on the user.  

Additional examples  

Additional incidents exemplifying the sources of interaction faults are available at: 
http://www.usability-standards.com/English/Interaction-Fault/Motivation/ 

The examples include case studies of incidents and accidents in the various 
applications: 
• Safety and disaster control.  
• Security.  
• Resource efficiency. 
• Sustainable development.  
• Quality of life.  

It should be noted that most of these examples involve several failure modes. The 
complexity of interaction failures explains why their causes are typically disputed.  

The need for standards 
Standards can help to defend against interaction faults such as those described 

above. Many of the methods and guidelines proposed here may also help in the case 
of non-human elements. Nevertheless, standards are the only means for defining 
responsibilities. 

It is commonly agreed that when the interaction is between non-human system 
elements, it is the developer�s job to prevent faults and to protect the system when 
they occur. However, when one of the system elements is a human operator, people 
tend to accuse the interacting person for the fault, and thus avoid fixing the design 
mistake. Therefore, standards are critical for human-machine interaction validation.  

Human-machine interaction faults and user errors  
People often confuse human-machine interaction faults with user errors. We can 

argue that the user activated the wrong control, or we can argue that a design defect 
enabled the user to activate the wrong control. Both are correct. 

The distinction between the two terms is in responsibilities, which impinges on 
our willingness to defend against them.  The term �interaction fault� is effectual; it 
suggests that the action could have been right, and that it is the system response that 
might have been wrong, implying that we could have avoided the fault. The term 
�user error�, on the other hand, is fatalistic, therefore ineffectual; it suggests that the 
user action was wrong, and since we cannot control the user behavior, the only thing 
we can do is punish the user. Standards can make it clear that user errors can be 
avoided and that it is the developers� job to prevent them.  

Manufacturer responsibility  
In case of an human-machine interaction fault, people are inclined to blame the 

user, the system operator. This natural, yet primitive approach is convenient for the 
manufacturer, but the result of blaming the user is that the real sources for the fault 
are not examined. 



 Example: leaking coolant fluid. Consider what happens to your car engine when 
driving with the coolant fluid leaking. After it runs out of liquid, the engine starts 
warming, but the engine thermometer does not indicate it, because it measures the 
fluid temperature, which is not there any more. Thousands of people experience this 
problem daily, but the car industry persistently disregards the problem, because 
nobody forces any standards about the usability of warning signals for car engines.  

Example: cable TV remote control (clicker). People at home waste their time, and 
pay for customer support, because they unintentionally change the TV setup or turn 
off the cable converter. Presumably, millions of people experience this problem 
nightly, but the cable TV industry disregards the problem, because there is no 
standard yet about preventing state mismatch.  

Standards can provide guidelines to manifest the manufacturer�s responsibility on 
usability design deficiency.   

Accident investigation 
In case of interaction fault that ended up in an accident, the investigators typically 

seek to charge and execute the user, instead of examining the sources for the failure. 
The advantages of this approach are clear: 
1. The focus of blame shifts away from the safety officers 
2. In case of casualties, blaming the operators provides fast and easy relief from the 

anger and fear from similar accidents 
3. It helps the operators confront their feelings of being guilty. 

The reasons why this is ineffectual approach is commonly acceptable are: 
1. In case of an accident, investigators can rarely retrieve the exceptional state and 

the critical event that triggered the accident. 
2. Operators are not aware of the details of the system operation in emergency, and 

therefore cannot show that the source of the problem was in design mistakes. 
3. Operators on duty typically feel responsible about ensuring safe operation. 

Besides the humanitarian problem of blaming the victims, this approach is also 
problematic in that it shifts the attention from the causes for the accident, and 
therefore disables investigating the design mistake, investigation that should prevent 
the next accident (Norman, 1990). The result is that accidents often repeat. 

Example: A320 crashed in Bangalore, India. Because the committee that examined 
the Air France Flight 296 accident found the captain responsible and guilty, they did 
not examine the defects in the airplane design. Consequently, in 1990, another A320 
crashed in Bangalore, India, for the same design mistake (Casey, 1998 - Leap of 
Faith). 
Example: PCA infusion pump. Nurses� complaints about errors in using were 
disregarded, resulting in 65-650 deaths. The litigation resulting from an investigation 
of a particular accident pointed to the nurse and the hospital rather than the device 
manufacturer (Sheridan and Nadler, 2006), enabling increasing the death toll.  

Standards can provide guidelines to regard the operators as victims rather than 
blaming them for the accident, and to investigate the design flaws that enabled the 
faulty situation. 

Incident management 
People investigate accidents instead of incidents. An incident is a sequence of 

events that could result in an accident. Most accidents were preceded by hundreds of 



incidents that could have been analyzed and subsequently enable preventing the 
accidents.  Standards can provide guidelines to capture incidents and investigate the 
design flaws that enabled the faulty situation, which fortunately did not end up in an 
accident. 

International usability standards  

Standards are a formal agreement on specific, detailed topics. They allow us to codify 
best practices or a set of requirements, and share them across industries, national 
boundaries and disciplines. (http://www.upassoc.org).   

Current usability standards are intended for use by usability professionals. 
Consequently, they do not appeal to system engineers. Some standards focus on 
processes, describing principles and making recommendations for how to achieve a 
result. Others are detailed specifications, and contain requirements that must be met. 
For a complete list, see UsabilityNet (Bevan, 2001).  
Limitations. Not only system engineers disregard usability standards. Most usability 
professional do not recommend to the project managers to use them. Possible reasons 
for this are: 
• Quantity: there are too many standards, and it is difficult to find the one that you 

really need 
• Maturity: usability engineering is a new disciplines,  
• Relevance: the validity of the standards is limited to certain scenarios 
• Arbitrariness: some of the standards are set arbitrarily, rather by well-established 

design principles (example, http://www.cja-jca.org/cgi/content/full/50/3/221) 
• Technology-dependence: some of the standards are technology specific, and 

therefore become obsolete after few years. 
• Added value: it is not clear how the standards practically contributed to the 

customers (possible reason: http://www.taskz.com/ucd_righi2_indepth.php). 

Standardizing the Defenses 
Goals 

Standards about interaction faults are required to help system engineers with the 
following tasks: 
• Define the defense strategy 
• Prevent interaction faults 
• Provide means to capture incidents of interaction faults 
• Define the requirements for usable alerting about exceptional or risky states 
• Define troubleshooting procedures 
• Define how to recover and reset the system in case of interaction faults 
• Prevent emergency operation errors 
• Provide means for accident investigation. 

 

Defining the defence strategy 
A commonly accepted defense strategy is the one presented by Reason (1990), 

who recommended a Swiss cheese model of preventive and protective layers. The 
defense layers are presented in the following table:  
 



Defense Layer Guideline examples 

Prevention  

1. Complexity reduction • Reduce features, options, states 
• Resolve state dependency 

2. Prevent exceptional states • Scenario based control design 

Protection  

3. Detect exceptional states • Implement state transition model 

4. Fault tolerance • Safety net 

5. Alerting • Alert design methodology 

6. Troubleshooting • Troubleshooting methodology 

7. Recovery • Master-slave protocols 
• Assuring risk awareness 
• Resynchronize states 

8. Emergency operation • Instructional dialog 

Investigation  

9. Incident management  • Incident logging and prompting 

10. Accident investigation • Investigation tools 

Preventing interaction faults 
People often confuse faults with their triggers. It is therefore important to specify 

the typical sources that trigger interaction faults. In order to prevent the interaction 
faults we need to identify and classify the sources that trigger them, and to provide 
methods and guidelines for disabling these triggers. 
Triggers.  An interaction fault may be the result of a unit fault or a user error.   

A unit fault can trigger an interaction fault when another unit fails to react to the 
original fault. The Air France Flight 296 accident and occasional engine overheat 
incidents described above are examples of interaction fault triggered by unit faults.   
User errors are user actions that do not match the designer�s intention. The Torrey 
Canyon accident, the Therac-25 accident, cable TV setup mishaps and production 
waste described above are all examples of interaction faults triggered by user errors. 

Sources of user errors include:  
• Usability mismatch: when the user�s intention does not match the designer�s 

intention. Historically, the term was user mistakes (Norman, 1983), but this has 
changed in support for the methodology of incident investigation. 

• User slips: when the user�s action is not as the user intended (More about this in: 
http://www.usability-standards.com/English/Interaction-Fault/Triggers/User-
slips.htm ) 



Preventing usability mismatch. Usability mismatch should be defined and examined 
in the context of operational procedure. Main guidelines for usability assurance: 
• Keep it Simple Stupid (KISS):  

o Simplicity: Removing unnecessary features and options reduces the chances 
for subsystem faults and user errors.  

o Stupidity: Removing unnecessary dependencies on states reduces the 
chances for activating the wrong function. 

• State independence. Defining user commands that are independent of the system 
state. Methods for this include: 
o Event threading by control duplication. Resolve state dependency by 

transforming conditional events to unconditional events.  
o Virtual controls. Make use of auxiliary �Shift� controls.  

• Eliminating redundant UI states (subsequent to removing state dependencies) 
• Automatic dependency termination, by time out or following a normal event. 
Preventing user slips. Guidelines include: 
• Scenario-based control. Avoid exceptional state combinations by operational 

procedures 
• State independence, as above 
• Avoid shortcut controls. Shortcut controls typically used for debugging are error-

prone, therefore they should be disabled on the system release. 

Protecting from interaction faults 
Interaction faults cannot always be prevented. For example, we cannot prevent 

exceptional states resulting from a fault of a system unit. Since the system behavior is 
well-defined for scenarios only, the system response to the next event might be 
unpredictable. For example, an accident of friendly air strike in December 2001 in 
Afghanistan was due to automatic coordination reset after battery replacement 
(Sheridan and Nadler, 2006). Also, complex systems such as flight control systems 
require that the operation is state dependent. In these cases, incidents of state 
mismatch are inevitable, because sooner or later the user will forget to regard the 
current state 

The standards for protecting from interaction faults should include guidelines for 
detecting and identifying interaction faults, for tolerating and recovering, for 
emergency operation and for investigating the incidents. 

Detecting interaction faults. How can the system detect interaction faults? 
By definition, an interaction fault is an incident of an undesired reaction to an 

action request, due to violation of a design assumption. Therefore, to detect 
interaction faults the system needs to: 
• Compare its state and behavior to the design assumptions, and  
• Decide that a particular reaction is undesirable.  
This means that the system needs to store a model of its own behavior, which is 
actually a high-level protocol. This model will define the normal behavior. At run-
time the system needs to continuously monitor its own behavior, by comparing to the 
protocol. Also, this means that the system needs to store rules describing design 
assumptions about the existence and range of various setup parameters at each stage 
along the protocol.  

Guidelines 
• Apply scenario-based design to define operational procedures 



• Formalize the operational procedures as a protocol, a model describing the system 
interactions, and the accompanying state transitions 

• Provide a means to record the actual interaction 
• Provide a means to verify that the actual interaction and states comply with the 

protocol.  
Tolerating interaction faults. Scenario-based design enables solving the 
completeness problem by taking the positive route; instead of specifying all 
exceptional state combinations (the negative route) we just specify the operational 
procedures for normal operation and for troubleshooting, corresponding to the 
scenarios. This type of specification is of low (linear) complexity, compared to the 
exponential complexity when taking the negative route. 

To specify the system behavior for all possible state combinations, we need to 
classify the states according to the desired system reaction (e.g., reject request, prompt 
for confirmation, beep, etc.). The design may include several layers of safety nets. At 
the top there is the protocol. At the bottom there is the default response to unknown 
situations. The default response may be to halt the system, when in testing, or to 
revert to a previous state, if it does not make sense to halt the system (such as in a 
transportation system).   

Alerting. This is an important feature in safety-critical systems. Consider the Torrey 
Canyon supertanker accident. The state mismatch occurred after the navigation 
system was unintentionally set to the Control state, a state intended for use in 
maintenance only. However, the last straw was the fact that the captain did not notice 
the exceptional state. Similarly, were the �engine idle� mode of the Airbus A320 
plane highlighted, the captain of Air France Flight 296 could have noticed it and 
reaccelerated before it was too late. 
Guidelines on alerting should include (Harel, 2006): 
• Provide default feedback about exceptional states, assuming that the operator is 

not attending the state change 
• Indication about exceptional states should be active, as opposed to passive, as was 

the case with the Torrey Canyon accident. 
• Two stage alerting: sound for drawing attention, visual for exploring the situation 
• When to sound: balancing the risks of missing a sound vs. false alarms 
• Adapt the scenario model to accommodate disturbing sounds. 
• Audibility assurance: considering variant levels of environmental noise 
• Choosing the proper type of sound: speech, tunes, etc. 
• Choosing the proper tones: pitch, volume, etc. 
• Information encoding in sound about hazard proximity and severity 
• Sound reliability: the case of alarm turned off � 
Fault verification. Suppose that the system has detected an instance of deviation 
from normal interaction. The reason for this may be an interaction fault, or a need to 
deviate from the normal procedure in order to solve a problem. How can the system 
tell which is the case? 

To decide how the system should react to a detected deviation from the procedure, 
we need to consider two cases about the subsystem that triggered the unexpected 
event: 
• subsystem is dumb and cannot tell if the event was due to a fault 
• The subsystem is intelligent and can inform the recipient about the intention.  



The case of a dumb sub system. Suppose that system cannot decide if the exception 
was due to a fault. How should the system react? There is no single answer to this 
question, but there is a guideline: The system design should include a definition of a 
default behavior for such cases. Example of default behavior can be: halt the system, 
beep, log the event, generate a report, alert, ignore, etc. 
The case of an intelligent sub system. Suppose that the system has a way to either 
reject or confirm the response to the exceptional event. How should the system react 
in case of rejection and in case of confirmation? In case of rejection, can the system 
roll back to the situation before the reception of the exceptional event? If the system 
cannot roll back, how should it proceed? In case of confirming the exceptional event, 
how should the unfinished procedure terminate? Again, there is no single answer to 
these questions, but there are several guidelines. 

Guidelines: 
• The system design should include a definition of the default behavior in case 

of rejection of the exceptional event.  
• The system specification should include a definition of rolling back from 

undesired states 
• A default rolling back rule should be specified for cases of unexpected states 
• The system specification should include a specification of the data that should 

be reset when rolling back 
• In case of confirming the exceptional event, the system should always start a 

new procedure 
• The specification should include definition of all the data that should be reset. 

and their default values 
The case of a human operator. We are not allowed to just ignore all events when in 
the exceptional state. Users, just like all other system components, are error 
generators. Even after doing everything to prevent user slips, they still slip. The only 
way to stop them from slipping is by keeping them away from the system, but 
unfortunately, we need the users to control the system, to monitor, to find problems, 
to report about them and to fix them. We need the operator�s skills to find the proper 
solution, which may involve means beyond the system implementation. On the other 
hand, when in an exceptional state, the system response to the next action might be 
unpredictable. The design challenge is to define how to respond to the operator 
commands in such cases. The challenge is to find out which of the user actions is 
erroneous and which is intentional. The guideline is that the system should provide 
means for the decision maker to decide whether to proceed with the procedure 
execution or to cancel the unexpected event 

User error detection. In a service-oriented architecture, such as in the examples of 
cable TV or production waste above, the user can access any service, any time. 
Nothing in the user interface suggests that a particular action might be erroneous. 
However, if the user interface is designed according to scenarios, then at each 
particular point of each procedure, we expect only certain actions from the user. Any 
unexpected action may be due to either a slip or an intentional deviation from the 
procedure. 

To conclude that the user action is by mistake, we need to ask the users about their 
intention. Typically, we use a dialog box to confirm that the suspected action was 
intentional. If they confirm that the action was intentional, we need to first make sure 
that the system can obey to their command, and then to make sure that the users 



indeed wish to terminate the current interaction. 
Troubleshooting. Users of software programs are typically being frustrated from 
error messages such as �System error�, raised by exception handlers, because they do 
not know what to do in order to solve the problem and how to avoid it in the future.  

Example: the Three Miles Island (TMI). The Three Mile Island nuclear power 
station accident (http://en.wikipedia.org/wiki/Three_Mile_Island_accident ) was the 
most significant in the history of the American commercial nuclear power generating 
industry. The accident was exacerbated by wrong decisions made because the 
operators were overwhelmed with information, much of it irrelevant, misleading or 
incorrect. The TMI accident revealed the need for helping the users find the source of 
warning messages.  
Example: chemical processing. Consider the example of a tank used for some 
chemical processing, with sensors for temperature, pressure and PH. The result of 
hazard analysis may indicate that leakage from one of the valves should raise the 
temperature and pressure and lower the PH. If the same valve is stuck closed, the 
temperature should raise and the pressure and PH should get lower values.  

Hazard road map. Similar data, with different results, may be obtained about other 
valves. If the tank leaks, the temperature and pressure may decrease and the PH would 
remain unchanged. What we get is a map of trends in sensor data due to hazards. We 
can use this map at run time to direct the operator to the sources of warning messages. 

Guidelines: 
• The system should guide the operators in finding the trigger for the exceptional 

activity 
• The system should indicate the source of the interaction fault 
• Avoid sensor-level warnings. Apply a hazard road map to provide a single 

warning, indicating the source for the interaction fault 
• The warning message should include all the details required for fixing the 

problem. 
Recovery. Sometimes, the feedback message may include instructions for recovery 
from the exceptional state, such as for restarting or rolling back to an earlier normal 
state. The instructions may depend on the particular action, but also on particular 
values of some of the state variables.  
Guidelines:  
• Provide a master-slave model to handle state resynchronization 
• Define a behavioral architecture to handle multiple instructions  
• Provide risk information for options in the recovery procedure 
• Arranged the recovery instructions in order of priority  
• Inform the operators about the risks of resuming normal operation. 
Emergency operation. How will the operators find the features they need to handle 
unexpected situations?  

Typically, because the situation is rare, the operators may not have experienced 
the part of the UI used to handle the risky situation. This means that this part of the UI 
should guide the operators about the options they can take. Because at this stage the 
operators might be in stress, they might not see the forest through the trees, therefore, 
information overload should be avoided. The conclusion is that this part of the UI 
should compose of wizards, enabling the operators� access to a minimal set of 



options. Wizard forms allow the user to specify parameters gradually, and to go back 
to previous forms before submitting the recovery command. 

On the other hand, it may be the case that the operators know how to recover from 
the emergency situation. This means that beside the wizards, the UI should provide 
visibility and direct access to critical features. 
Additional Guidelines: 
• Provide wizards to drill-down to the problem solving 
• Enable operation in training mode, so that the operators have the chance to 

experience the system behavior in unexpected situations 
• The system design shall not set default values for data that the human operator 

needs to enter manually. 

Investigation 
From each incident, we can learn. The basic means is by logging the system 

activity and states. The logger may be the same as the one used for identifying the 
incidents, by comparing the system activity with the model. 

It is very easy to include a logger in the system, but special means should be 
added to extract information valuable for the investigation. 
Guidelines for incident investigation: 

• Provide an incident reporter, with statistics about repeating incidents, 
classified by hazards 

• Provide a search engine enabling filtering the log files by key features and 
selecting incidents for investigation 

• Provide a back tracking visualization means showing the concurrency of state 
transitions (e.g., in form of  GANTT) 

• Provide an incident manager, enabling to record and back track aggregates of 
incidents in form of design problems. 

Standards Development 
Proof of concept 

The methods and guidelines described here are generic, and their validity limits 
are well recognized, which means that they may be formulated as industry standards. 
Few of the methods proposed for avoiding state mismatch were tested using 
ModeTester, an experimental interaction specification tool, developed by ErgoLight 
Ltd. This tool enables specification of the system structure, UI layout, control usage 
and operational procedures and to report on violation of the guidelines.  

ModeTester represents the system structure by a component tree, where each node 
can hold a simple state machine. State hierarchy is defined as links from the states to 
components that they enable, and state charts are projected from this structure by 
ignoring the components.   

The operational procedures are elaborated based on scenarios. The procedures are 
defined by links between UI controls. The links have a Logic-Type property, enabling 
specifying serial order, parallel sequencing and options. Actions may depend on 
conditions, defined by the states.  

Finally, ModeTester generates reports with use cases describing the ways the 
functions are used, and with layout usage, describing the ways the UI elements are 
used. The reports provide warning about UI controls that are overloaded in ways that 



might result in state mismatch. 
To check the feasibility of using tools to prevent state mismatch, we used 

ModeTester to specify the operation of a cable TV remote control set 
(http://www.hot.net.il/HOT.aspx?docID=1686&FolderID=631 ). The results indicate 
that basic methods and guidelines described in this article can be formulated as 
standards.   

Interaction validation 

New initiative.  Today, there are no standards for either preventing or protecting from 
interaction faults. Recently, the Standards Institute of Israel (SII) joined the 
international effort for usability standardization. Besides adopting international 
usability standards, which target usability practitioners, the Israeli chapter initiates 
standards that will target system engineers as well. In particular, the intention is to 
elaborate and formalize the guidelines mentioned in this article, to help system 
engineers defend the system from interaction faults.  

The plan. System engineers should benefit from the following features: 
• Proof of added value: the standards for interaction validation are examined by 

benchmarks, based on the examples described in this article 
• Validity assessment: guidelines will be stated together with their validity 

limitations 
• User-centered design: the standards will guide system engineers about the relevant 

human factors and how to apply them in scenario-based design 
• Test-time features: the standards will guide the engineers about the way to include 

features that are useful for the testing stage, so that they will not hamper usability 
of the released version. 

• Interactive standards: to facilitate using the standards, they will be arranged as 
html pages, with links that will enable navigation to explanations about 
guidelines, human factors, validity limitations etc. 

• Demonstration: a demo program should be developed and released with the 
standard, enabling the customer to experience the meaning of the instructions. 

• Design tools: based on the experience obtained by using ErgoLight ModeTester it 
is clear that key methods and guidelines presented here can be integrated in tools 
for system specifications, to eliminate interaction faults by design. 

Pilot project. A committee of experts is working these days on new standards for 
ensuring the usability of sound alarms by medical equipments. An interactive version 
of the commonly accepted standard 60601-1-8 revealed the need for rewriting it. A 
demo program has been developed, demonstrating better ways for alerting about 
medical emergencies. 

Conclusion 
Did you ever wonder why interactive systems are typically error-prone and why 

system development is typically behind schedule? This article shows that the effort 
required to handle exceptional events is in an order of magnitude more than that for 
conforming to the requirements for normal operation.  

Interaction faults are a main source for productivity and maintenance loss, for 
customer dissatisfaction, for accidents and eventually for shortening the system life 
cycles. The article describes and analyses several examples of interaction faults. The 
article provides methods and guidelines for preventing these failure sources, and for 



protecting from those that were not eliminated. Few of these methods for preventing 
interaction faults caused by state mismatch were tested using an experimental tool. 
New standards are being developed in the SII, intended to formulize these methods 
and guidelines for the benefit of system engineers, to improve system safety, 
productivity, reliability and ease of use. 
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